P(x)=60x-0.4x^2-(2x+15)

Simple and best practice solution for P(x)=60x-0.4x^2-(2x+15) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(x)=60x-0.4x^2-(2x+15) equation:



(P)=60P-0.4P^2-(2P+15)
We move all terms to the left:
(P)-(60P-0.4P^2-(2P+15))=0
We calculate terms in parentheses: -(60P-0.4P^2-(2P+15)), so:
60P-0.4P^2-(2P+15)
determiningTheFunctionDomain -0.4P^2+60P-(2P+15)
We get rid of parentheses
-0.4P^2+60P-2P-15
We add all the numbers together, and all the variables
-0.4P^2+58P-15
Back to the equation:
-(-0.4P^2+58P-15)
We get rid of parentheses
0.4P^2-58P+P+15=0
We add all the numbers together, and all the variables
0.4P^2-57P+15=0
a = 0.4; b = -57; c = +15;
Δ = b2-4ac
Δ = -572-4·0.4·15
Δ = 3225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3225}=\sqrt{25*129}=\sqrt{25}*\sqrt{129}=5\sqrt{129}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-57)-5\sqrt{129}}{2*0.4}=\frac{57-5\sqrt{129}}{0.8} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-57)+5\sqrt{129}}{2*0.4}=\frac{57+5\sqrt{129}}{0.8} $

See similar equations:

| 4(x+4)-6=2x+2(5+x) | | 7x(2x-10)=39 | | -5/3(4x+1)+6x=11/3 | | 3x^2=17+28 | | 1=5×3.14×n | | 4x+9*1/2=3x*7/3 | | u-6.22=7.85 | | 4.5x=7/3 | | v+7.7=9.17 | | 10r−5r=20 | | 3x/7-x/7=20 | | 36^4n-3=216 | | 1/12y-8=-8 | | 7(u-6)=2u-37 | | -8x-31=7(x+2) | | 3(x+2)=9x-42 | | 6(x+5)-2x=2 | | -19=-8w+5(w-5) | | 10−5x=−20 | | 28=2(u=2)-8u | | 5y+4(y-4)=-34 | | 12x3x=60 | | 232=-v+33 | | 171-x=72 | | 75-w=182 | | -10-3(2x+1)18x-1=0 | | 9(x/3+1)=≥6 | | 9/11=x^2 | | 2/x=7.1/60 | | -1-6z+3=2 | | 1-3y-1=-14 | | 3x+3/4=4x-3/4= |

Equations solver categories